AiBrow
  • Welcome
  • AiBrow web API
    • Getting started
    • Feature comparison
  • AiBrow Extension
    • Getting started
    • Web polyfill
    • Helping users install the AiBrow extension
    • Remove the on-device helper or models
  • Examples
    • CoreModel API
    • Embedding API
    • LanguageDetector API
    • LanguageModel API
    • Rewriter API
    • Summarizer API
    • Translator API
    • Writer API
    • Using different models
    • Model download feedback
    • Getting JSON output
  • API Reference
    • AI
      • AiBrowAI
      • BrowserAI
      • WebAI
    • AiBrow
      • CoreModelFactory
        • CoreModel
        • CoreModelCapabilities
      • EmbeddingFactory
        • Embedding
        • EmbeddingCapabilities
      • LanguageDetectorFactory
        • LanguageDetector
        • LanguageDectectorCapabilities
      • LanguageModelFactory
        • LanguageModel
        • LanguageModelCapabilities
      • RewriterFactory
        • Rewriter
        • RewriterCapabilities
      • SummarizerFactory
        • Summarizer
        • SummarizerCapabilities
      • TranslatorFactory
        • Translator
        • TranslatorCapabilities
      • WriterFactory
        • Writer
        • WriterCapabilities
    • Types
      • AICapabilityAvailability
      • AICapabilityGpuEngine
      • AICreateMonitor
      • AILanguageDetectorDetectResult
      • AIRewriterFormat
      • AIRewriterLength
      • AIRewriterTone
      • AISummarizerFormat
      • AISummarizerLength
      • AISummarizerType
      • AIWriterFormat
      • AIWriterLength
      • AIWriterTone
      • AIModelDtype
    • Models
Powered by GitBook
On this page
  1. Examples

Embedding API

AiBrow allows you to create embeddings from any piece of text. These can then be stored and searched over to find similar text to a new input

import AI from '@aibrow/web'

// Create the session
const session = await AIndow.aibrow.embedding.create()

// Generate embeddings for known data
const data = {
  '1': 'data1',
  '2': 'data2',
  ...
}
const dataIds = Object.keys(data)
const vectors = await session.get(dataIds.map((id) => data[id]))
const embeddings = dataIds.map((id, index) => ({ id, vector: vectors[index] })

// Sort the list of embeddings by the most similar
const search = await session.get('search data')
const results = session.findSimilar(embeddings, search)
console.log(data[results[0].id])
PreviousCoreModel APINextLanguageDetector API

Last updated 3 months ago